metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Hua Huo,^a Xiao Li Cheng,^a Hui Zhao^a and Seik Weng Ng^b*

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ Disorder in main residue R factor = 0.022 wR factor = 0.073 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[diaqua[3-(2-pyridyl)-1*H*-pyrazole- κN^2]cadmium(II)]- μ -squarato- $\kappa^2 O:O'$]

The squarate dianion in the crystal structure of the title compound, $[Cd(C_4O_4)(C_8H_7N_3)(H_2O)_2]_n$, links the heterocycle-chelated water-coordinated Cd atoms into a zigzag chain. The O atoms of the squarate dianions are aligned *trans* to each other in the octahedron surrounding the Cd atom. There are two independent square dianions and both lie on inversion centers. Received 25 January 2005 Accepted 27 January 2005 Online 5 February 2005

Comment

The squarate dianion, $C_4O_4^{2-}$, furnishes a large number of complexes with metal cations, and because the unit carries two negative charges, it is particularly suited for complexation with divalent cations. A number of metal squarates and their complexes have been crystallographically characterized (Cambridge Structural Database, Version 5.26; Allen, 2002). The cadmium derivative exhibits an unusual cage-like channel network; the two coordinated water molecules are lost when the compound is heated but the ready rehydration implies a robust squarate–cadmium framework (Maji *et al.*, 2001). This compound, $[Cd(C_4O_4)(H_2O)_2]$, is known to afford an adduct with 4,4'-bipyridine, but the adduct is sensitive to the loss of the three water molecules (Wang *et al.*, 2004). The present adduct with 2-pyridylpyrazole, (I) (Fig. 1), is an air-stable compound.

The aromatic amine functions in a chelating mode and two of its N atoms occupy *cis* sites of the octahedral coordination geometry around the Cd atom. The two water molecules are also aligned *cis* to each other. The mode of bonding of the squarate dianion gives rise to the formation of a zigzag chain structure. A similar reaction between $[Cd(C_4O_4)(H_2O)_2]$ and triethanolamine gave instead the bis-triethanolamine complex in which the squarate anion exists in the outer coordination sphere (Uçar *et al.*, 2004).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEPII plot (Johnson, 1976) of a fragment of the polymeric chain of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. Only one disorder component is shown.

Experimental

Cadmium nitrate tetrahydrate (0.62 g, 2 mmol) and 2-pyridylpyrazole (0.29 g, 2 mmol) were added to a hot aqueous solution of squaric acid (0.23 g, 2 mmol). The pH was adjusted to 6 with drops of 0.2 M sodium hydroxide. The solution was allowed to evaporate at room temperature and pale-yellow prismatic crystals were obtained after one week. Analysis calculated for C12H11CdN3O6: C 35.53, H 2.73, N 10.36%; found: C 35.57, H 2.70; N 10.34%.

Crystal data

$[Cd(C_4O_4)(C_8H_7N_3)(H_2O)_2]$	Z = 2
$M_r = 405.64$	$D_x = 2.028 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 6.066 (1) Å	Cell parameters from 6304
b = 8.643 (2) Å	reflections
c = 13.272 (3) Å	$\theta = 3.2 - 27.5^{\circ}$
$\alpha = 104.87 \ (3)^{\circ}$	$\mu = 1.68 \text{ mm}^{-1}$
$\beta = 97.27 \ (3)^{\circ}$	T = 295 (2) K
$\gamma = 93.29 \ (3)^{\circ}$	Prism, yellow
V = 664.2 (2) Å ³	$0.38 \times 0.25 \times 0.18 \text{ mm}$

Data collection

Rigaki R-AXIS RAPID IP diffractometer	2938 independent reflections 2774 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.013$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -7 \rightarrow 6$
$T_{\min} = 0.504, \ T_{\max} = 0.737$	$k = -11 \rightarrow 11$
6388 measured reflections	$l = -17 \rightarrow 17$

 $(0.0287P)^2$ + $(0.0287P)^2$

 $+ 2F_c^2)/3$

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.02)]$
+ 0.7719P]
where $P = (F_o^2 + 2)$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Cd1-O1	2.240 (2)	Cd1 - O2w	2.233 (2)
Cd1-O3	2.378 (2)	Cd1-N1	2.315 (3)
Cd1 - O1w	2.371 (6)	Cd1-N2	2.339 (3)
O1-Cd1-O3	91.4 (1)	O3-Cd1-N2	86.1 (1)
O1-Cd1-O1w	98.9 (3)	O1w-Cd1-O2w	83.3 (3)
O1-Cd1-O2w	100.9 (1)	O1w-Cd1-N1	96.8 (2)
O1-Cd1-N1	92.1 (1)	O1w-Cd1-N2	85.1 (3)
O1-Cd1-N2	164.2 (1)	O2w-Cd1-N1	166.8 (1)
O3-Cd1-O1w	168.8 (4)	O2w-Cd1-N2	94.7 (1)
O3-Cd1-O2w	90.5 (1)	N1-Cd1-N2	72.3 (1)
O3-Cd1-N1	87.1 (1)		

Table 2 Hydrogen-bonding geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1w - H1w1 \cdots O1^{i}$	0.85	2.26	3.04 (2)	152
$O1w - H1w2 \cdots O2^{ii}$	0.85	1.90	2.661 (6)	148
$O1w' - H1w3 \cdots O2^{ii}$	0.85	1.94	2.692 (9)	146
$O2w - H2w2 \cdots O2$	0.85	1.84	2.668 (3)	165
$O2w - H2w1 \cdots O4^{iii}$	0.85	1.84	2.679 (3)	168
$N3-H3n \cdot \cdot \cdot O3^{i}$	0.85	2.05	2.809 (3)	149

Symmetry codes: (i) x - 1, y, z; (ii) 1 - x, 1 - y, 2 - z; (iii) 1 - x, 1 - y, 1 - z.

The aromatic H atoms were placed at calculated positions (C-H =0.93 Å and N-H = 0.85 Å) and were included in the refinement in the riding-model approximation, with $U_{iso}(H)$ values set at 1.2 times $U_{eq}(C,N)$. The water O-H bonds were rotated around the Cd- O_{water} axes to fit the electron density $[O-H = 0.85 \text{ Å and } U_{iso}(H) =$ $1.2U_{eq}(O)$]. One of the water molecules is disordered over two sites [occupancy factors are 0.59 (3) and 0.41 (3)]; bond dimensions involving the minor component are not listed in Table 1. The minor component water molecule forms only one hydrogen bond.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick,

metal-organic papers

1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036) and the University of Malaya for supporting this study.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Maji, T. K., Mostafa, G., Sain, S., Prasad, J. S. & Chaudhuri, N. R. (2001). *CrystEngComm*, paper No. 37.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). *CrystalStructure*. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Uçar, I., Yeşilel, O. Z., Bulut, A., İçbudak, H., Ölmez, H. & Kazak, C. (2004). Acta Cryst. C60, m392-m394.

Wang, C.-C., Yang, C.-H., Tseng, S.-M., Lee, G.-H., Sheu, H.-S. & Phyu, K. W. (2004). Inorg. Chim. Acta, 357, 3759–3764.